
Lightweight Array Contraction by Trace-Based
Polyhedral Analysis⋆

Hugo Thievenaz1, Keiji Kimura2, and Christophe Alias1

1 CNRS, ENS-Lyon, Inria, University of Lyon, France
{firstname}.{lastname}@ens-lyon.fr

2 Waseda University, 3-4-1 Okubo, Shinjuku-ku Tokyo, 169-8555, Japan
keiji@waseda.jp

Abstract. Array contraction is a compilation optimization used to re-
duce the memory consumption, by reducing the size of temporary arrays
in a program while preserving its correctness. The usual approach to this
problem is to perform a static analysis of the given program, creating
overhead in the compilation cycle. In this work, we take a look at ex-
ploiting execution traces of programs of the polyhedral model, in order
to infer reduced sizes for the temporary arrays used during calculations.
We designed a four step process to reduce the storage requirements of
a temporary array of a given scheduled program, in which we used an
algorithm to deduce array access functions for which bounds are mod-
ulos of affine functions of parameters of the program. Our results show
memory reductions of an order of magnitude on several benchmarks ex-
amples from the polyhedral community. Execution time is compared to a
baseline implementation of a static algorithm, and results show speed-up
factors up to 20.

Keywords: Compilation · Array Contraction · Polyhedral Model · Dy-
namic Analysis · Memory Allocation

1 Introduction

The problem of temporary memory allocation is a challenge for programs meant
to be running on platforms that have limited computing resources. Such tempo-
rary arrays, sometimes called buffers, manipulate results of intermediate compu-
tations that are disposed of at the end of the program. They are therefore some-
times oversized, when array cells are left unused and not overwritten by following
computation despite their value no longer being used. Array contraction is a pro-
gram transformation whose goal is to detect such unused array cells and replace
a write to another cell to an unused one, in order to reduce the effective memory
footprint of the array and shrink its maximum size, allocating less memory to the
buffer while keeping program correctness intact. The polyhedral model provides
the necessary mathematical foundations to develop compiler optimizations such
as array contraction, that focuses on compute-intensive scientific kernels with

⋆ Supported by Inria through the Polytrace exploratory action.

2 H. Thievenaz et al.

affine loop kernels manipulating arrays. In this context, compilers rely on static
analysis of the program to reduce the memory footprint of the program. This has
been the basis of many works in the field [1,2,3,5,7,13], that all use static analy-
sis in their method. However, dynamic analysis sometimes manages to outclass
static compiler ones, as most, if not all static methods use polyhedral projections
and integer linear programming, which can be expensive depending on the shape
of the code.

It would seem that no approach to this problem, to our knowledge, has
explored the route of using dynamic analysis of the program on smaller inputs.
In this work, we contradict this habit and study the problem of determining a
buffer allocation function from analysis of several execution traces. The problem
can be formulated as follows: given a program manipulating a temporary array
A, we want to infer allocations functions σA, of minimal image cardinal, such
that any access A[i] can be safely replaced by Â[σA(i)]. Our general approach is
then to apply a lightweight analysis on a few offline execution traces, with the
assumption that the input parameter instances chosen for those traces are small
enough that the execution time is significantly smaller. Since our focus is on the
problem of array contraction, a known technique used to reallocate temporary
arrays so that their sizes are reduced, we emphasize that this is only one of the
many potential applications of this paradigm.

In this paper, we made the following contributions:

– We present a new method for storage optimization, a dynamic approach that
uses offline execution trace analysis. In particular, we describe a liveness
algorithm from such execution trace, and another to compute the maximum
number of variables alive alongside a dimension, from which we get our scalar
modular mappings.

– We show, through the use of interpolation, that we can identify parameters
from said modulo and deduce a generalized mapping. We prove that this
construction is always correct.

– We implement this method on several benchmarks from the polyhedral com-
munity and show reductions both in implementation execution time and
storage mappings deduced.

Our paper is structured as follows. Section 2 outlines the polyhedral model
and the array contraction problem. Section 3 discusses related work. Section
4 describes our trace-based approach. Section 5 presents experimental results.
Finally, Section 6 concludes this paper and draws research perspectives.

2 Background

We present the necessary background to the problem. We define the framework
used, namely the polyhedral model, and what is an usual polyhedral compilation
flow. Then, we define the problem at hand, array contraction, and the related
notions.

Lightweight Array Contraction by Trace-Based Polyhedral Analysis 3

f o r (y=0; y<2; y++)
f o r (x=0; x<N−2; x++)

blurx [x , y] = in [x , y] +
in [x+1,y] + in [x+2,y] ; //S

f o r (y=2; y<N; y++)
f o r (x=0; x<N; x++)

blurx [x , y] = in [x , y] +
in [x+1,y] + in [x+2,y] ; //T

out [x , y] = blurx [x , y−2] +
blurx [x , y−1] + blurx [x , y] ; // U

x

y

0

1

2

3

0 1 2 3

S

T

U

...

...

T→U

Fig. 1: Motivating example: 2D Blur filter

2.1 Polyhedral model

The polyhedral model defined by [8] is an intermediate representation of a loop
nest as a graph over points of Zn, which gives us a geometrical representation
of the statements composing the loop. The class of programs that can be rep-
resented in this model, and therefore are subject to polyhedral optimizations, is
polyhedral programs. These are (sequences of, possibly nested) for loops where
all loop bounds and conditions are affine functions of the surrounding loop it-
erators and program parameters. Each execution of a statement S, nested in
a n-depth loop, namely an instance or operation, can be represented by ⟨S, i⟩
where i is a n-dimensional iteration vector of the surrounding loop indices. Its
iteration domain D, the set of all possible iteration vectors for S, forms a graph
over points of Zn.

Running example We illustrate our algorithm on the 2D Blur filter illustrated
with its iteration domains on Figure 1. This is a well-known example of the
polyhedral community, that applies two consecutive elementary convolutions on
the input signal in. We have represented the iteration domains of S, T and U as
colored boxes. T and U are not represented entirely on the y axis for clarity, but
they of course coincide.

Polyhedral compilation flow Compilation flows usually produce an in-between
form of the program at hand, named Intermediate Representations, on which
transformations can be more easily applied to optimize its execution. Polyhedral
compilation is no different, and in the case of our method, we produce those
IRs as a pre-analysis step, separated from the algorithm. Figure 2 describes our
simplified polyhedral compilation flow. Source code gets transformed once to an
intermediate representation (IR) through polyhedral raising, who is then subject
to possibly multiple affine transformations in order to optimize execution of

4 H. Thievenaz et al.

the target code. The focus of our algorithm, and its performance, is therefore
focused entirely on the application of such polyhedral optimization, for which
ours is Array Contraction.

Source code
Polyhedral
Raising

IR

Affine
transformations

Array
contraction

Code
generation

Target Code

Fig. 2: Simplified polyhedral compilation flow of our method

Affine transformations. In the heart of a polyhedral compiler, code transforma-
tions are expressed by affine mappings specifying a new execution order:

Definition 1 (Affine Scheduling). A schedule maps each execution instance
⟨S, i⟩ to an execution date θS(i). In the polyhedral model, schedules are affine per
statement, i.e. θS(i) = ASi+bS, and dates are vectors of Zp ordered with the lex-
icographic ordering ≪. A schedule maps each iteration vector to its counterpart
in the transformed, scheduled program.

A possible schedule for our motivating example is the canonical sequential sched-
ule θ, which is the order specified by the original for statements of the program:
θS(y, x) = (0, y, x), θT (y, x) = (1, y, x, 0), θU (y, x) = (1, y, x, 2).

Correctness. In the polyhedral model, data dependencies might be expressed
between iterations. In the computation of the blur-interleaved example, for any
instance where y ≥ 3, we have that an instance of ⟨U, x, y⟩ of the second convolu-
tion depends (flow) on the preceding instances ⟨T, x, y⟩, ⟨T, x, y−1⟩, ⟨T, x, y−2⟩
of the first convolution. Anti- and output- dependencies are expressed in the
same way. The dependence relation is denoted by →. Of course, the schedule is
constrained by data dependencies:

⟨S, i⟩ → ⟨T, j⟩ ⇒ θS(i)≪ θT (j) (1)

This gives affine constraints which allow to compute affine schedules [8].

Lightweight Array Contraction by Trace-Based Polyhedral Analysis 5

2.2 Array Contraction

The problem of array contraction, given a temporary array A, consists in finding
a mapping A[i] → Â[σA(i)] reducing or matching the unknown required size of
A, minimal size for which the correctness of the program is intact. In our case,
we seek memory mappings of the form σA(i) = i mod b(N), where b is an affine
function of program’s structure parameters N (e.g. array size).

Definition 2 (Conflict Relation). A conflict relation ▷◁θ is defined as the set
of array cells whose lifetimes intersect thorough the execution of the program for
the schedule θ.

The conflict relation induces a correctness condition on array contraction, as
conflicting array cells might be mapped to different places:

a[i] ▷◁θ a[j] ∧ i ̸= j ⇒ σa(i) ̸= σa(j) (2)

Running example (cont’d) With the original loop schedule, the temporary array
blurx might be contracted with the mapping (y, x) 7→ (y mod 3, x mod N),
when N ≥ 3. Indeed, blurx bufferizes the first convolution (S,T) before applying
the next convolution (U) which only needs three rows y. This way, the footprint
is reduced to 3×N array elements.

The successive minima technique [10] is the state-of-the-art approach to com-
pute such mappings. The method of this work by Lefebvre and Feautrier can be
boiled down to the following process. The conflict relation is represented as a dif-
ference set∆a = {i−j | a[i] ▷◁ a[j]} for each array a; Then, for each array dimen-
sion k, the modulos are computed with bk(N) = 1+max{δk | (δ1, . . . , δn) ∈ ∆a}.
Finally, resolved conflicts are removed before iterating on the next array dimen-
sion : ∆a := ∆a ∩ {δ | δk = 0}.

Our contribution, as we will show later, consists in a lightweight instantiation
of this algorithm on several small execution traces, followed by an interpolation
to obtain a general mapping. We show experimentally that our results are ob-
tained way faster than with the Lefebvre-Feautrier method, the latter dealing with
costly parametric ILP. More fundamentally, this work is a proof-of-concept
that costly polyhedral analysis might be rephrased as lightweight trace
analysis. This opens new perspectives to scale polyhedral compilers.

3 Related work

We quickly go over the multiple works related to our subject. We first present
defining works on the subject. We then go over closely related work on the
subject of array contraction. Finally, we present loosely related work on trace
manipulation and analysis, but no work on dynamic array contraction by trace
analysis has crossed our eyes.

6 H. Thievenaz et al.

Affine array contraction As described by [3,10], and again in this work, the
successive modulo technique seeks to reduce the memory storage requirements of
an already scheduled program, by performing static analysis in order to construct
a conflict set. The array dimensions are reduced by finding contraction moduli
along the array’s axes. While recalling that the method of Lefebvre and Feautrier
[10] obtains on the example blur-interleaved a storage mapping (y, x) 7→ (y mod
3, x mod N), the more advanced work of Bhaskaracharya et al. [3] infers a more
refined mapping (y, x) 7→ 2x− y mod (2N +1), because their approach consider
the change to a better basis for the contraction vectors.

Inter-array and intra-array contraction The type of optimization we are looking
for in this paper is an intra-array optimization as designed by [3], and references
such as [1,8,11] focus on this intra-array analysis. This means that the analysis
performed is done on a per-array basis. [3,4] build a technique for intra-array
as well as inter-array optimization, a technique that consider the reduction of
multiple temporary arrays, allowing them to find even more reduced mapping by
changing (often reducing) the dimensionality of the array(s) considered for the
analysis. [6] calculate the memory requirements of a program by approaching
them as a polynomials in the parameters of the program, but their method has
to relax the solutions as rational instead of integer, and only give an upper bound
of the memory consumption.

Trace analysis In terms of trace analysis, some work has already covered similar
topics such as loop recognition and trace prediction [9] and trace-based affine
loop reconstruction [12]. The former compresses traces (as sequences of scalars)
and constructs a loop nest producing such sequence of numbers. The latter
focuses on reconstructing loops based on their predictable affine behavior, from
the addresses of the memory accesses, and presents a terminating algorithm
to reconstruct the loop function entirely. These works, therefore, focus only on
rebuilding incomplete traces, and not on the usage of traces in a compilation
process.

4 Our approach

This section presents the contributions made to the problem of array contraction,
and detail our method of offline trace execution and analysis to infer a general
mapping.

4.1 Overview of the approach

Figure 3 depicts our approach. We start with an input Intermediate Represen-
tation, comprised of the program, its schedule θ, and its Dependence Graph.
We also input the code generated from θ (Template code), which will allow to
produce traces.

Lightweight Array Contraction by Trace-Based Polyhedral Analysis 7

Polyhedral IR

Generate
input

parameters

Log trace

Template
code

Instantiate
trace

generator

Get trace
mapping

Next trace

Interpolation

General
mapping

Fig. 3: Our approach

First, we compute the input parameter instances on which running the pro-
gram to obtain interesting traces. We also instrument the template code to
prepare the trace generation. Then, for each input parameter instance N , we
generate the trace (Log trace) and we apply a lightweight instance of the suc-
cessive minima method (Get trace mapping). We end up with a collection of
trace mappings. Finally, we infer the general mapping (working for any input
parameter) from an interpolation between each input parameter instance and
its corresponding output modulo mapping (Interpolation). All these steps are
detailed thereafter.

4.2 Generating input parameter instances

Our trace analysis operates on execution traces of programs, meaning we have to
instantiate our kernel program with scalar values for its parameters N . Since we
would like to interpolate modulos as an affine forms of parameters N 7→ bk(N),
we need as many parameters instance as |N |+1. Also, the parameters instances
must be independent to enforce a unique interpolation. We first explain how the
first parameter instance is computed. Then, we explain how we get the remaining
parameter instances.

8 H. Thievenaz et al.

First parameter instance, O We derive the set of parameters covering all the
dependencies by projecting the dependency constraints of the program on each of
the parameters. Then, we compute a minimum value for each of the parameters.
Usually the constraints are of the form N ≥ ℓ with ℓ some constant lower bound.
Hence, we may infer a lower bound for each parameter with a simple syntactic
heuristic without using expensive linear programming techniques. This gives the
first parameter instance, denoted as O (for ”origin”). This heuristic assumes that
in the main program execution, all the dependencies are reached. However, this
is not always the case, and if we deal with imperfect loop nests, then the result
is an upper bound, giving potential additional overhead by operating on traces
with bigger parameter instances than needed. How to extend this heuristic to
the general case is left to future work. In our running example, the intersection of
all the dependence constraints boils down to the polyhedron {N |N ≥ 3}. Hence
O = (3), denoting the parameter instance N = 3.

Remaining parameter instances One set of parameter values is not sufficient to
establish an interpolation. For each parameter Ni, 1 ≤ i ≤ p, we create a new
parameter instance, linearly independent from the rest. A straightforward way
to compute such new instances is to build the set of increments by each canonical
vector ei: I = (O,O + e1, . . . ,O + ep), where O + ei = (N1, ..., Ni + 1, ..., Np).
These parameter instances will lead to a unique affine interpolation, as we will see
later. On our example, we would obtain (3, 4), denoting the parameter instances
N = 3 and N = 4.

4.3 Inferring a mapping on a trace

The following algorithm describes our lightweight instance of the successive min-
ima method to compute a mapping from an execution trace.

Algorithm 1: Find the mapping for the array a on the trace T

Result: mapping i 7→ i mod m
function GetMapping(T ,a)
(In,Out)← liveness(T)
CS ←

⋃
p
{(a[i], a[j]) | a[i], a[j] ∈ In(p)}

∆a ← {i− j | (a[i], a[j]) ∈ CS}
for each array dimension i, starting from 0, in increasing order do

mi ← 1 +max{δi | (0, ..., 0, δi, ...) ∈ ∆a}
end

We apply a direct liveness analysis on the trace to compute the difference
set ∆a we defined earlier, then each modulo is computed as the maximum dif-
ference measured alongside each array dimension i, following the lines of the
successive minima algorithm. Since we deal with finite (and small) integer sets,
no ILP is required. This method is an instance of the Lefebvre-Feautrier algo-
rithm [10] since we produce the same mapping while operating on a trace, i.e.

Lightweight Array Contraction by Trace-Based Polyhedral Analysis 9

an instantiated program. Since the mapping is affine, we can directly apply a
linear interpolation to deduce a generalized parametrized mapping, as we will
describe in the next section.

Motivating example (cont’d) For our blur-interleaved example, such analysis
would show, on the trace for N = 3, for the blurx array, that the biggest width
alongside the y axis is 2, so there are a maximum of 2+1 array cells in conflict
at any given control point p. The observation on x is similarly done, and again
we measure a width of 2, and so a number of conflicts of 3. Hence, we obtain
(y, x) 7→ (y mod 3, x mod 3). This is repeated for the trace with N = 4 where
we obtain (y, x) 7→ (y mod 3, x mod 4).

4.4 Interpolation

From the mapping instances deduced, we show how to interpolate a generalized
mapping that depends on program parameters. We retrieve mappings of the form
i 7→ i mod b(N) by a direct affine interpolation from the pairs of inputs (param-
eter instances) and outputs (modulo scalars found). We realise this by solving
the following systems of equations. Let p be the number of program parameters
(N = (N1, . . . , Np)), and k the number of array indices (i = (i1, . . . , ik)). Then:

σa(i) =

 i1 mod f1(N1, ..., Np)
...

...
ik mod fk(N1, ..., Np)

 (3)

This system of equation defines the fi functions that we are determining. Ex-
pecting to deal with affine functions, each fℓ can be written in the homogeneous
form:

fℓ(N) = τ ℓ.

(
N
1

)
(4)

We have collected sample values from these affine functions, for each array
index ℓ, represented by:

fℓ(O) = m0

...
fℓ(O + ep) = mp

(5)

Which can be written as Aτ ℓ = m: O · · · 1
...

O + ep · · · 1

 τ ℓ =

m0

...
mp

 (6)

We now show that this system has always a unique solution in Zp+1:

Theorem 1. A is unimodular.

10 H. Thievenaz et al.

Proof. We apply the Gaussian elimination method to express the determinant
of A. We may substract to each of the first p row that we label each ai, the
last row ap+1 multiplied by Ni without changing the determinant. The resulting
matrix is as such:

detA =

∣∣∣∣∣∣∣∣∣∣∣

0 · · · · · · 0 1
1 0 · · · 0 1
0 1 · · · 0 1
...
. . .

. . .
...
...

0 · · · 0 1 1

∣∣∣∣∣∣∣∣∣∣∣
It immediately follows that the determinant of this matrix is (−1)p+1 × det Ip,
the permutation of the p + 1-th and the first column leading to the (−1)p+1

factor, and det Ip the determinant of the lower-left matrix which is the identity.
Therefore, detA = ±1 and so A is unimodular. ⊓⊔

Because A is unimodular, the linear equation system always has integer solu-
tions. Therefore, for any given program with p parameters, p+1 traces are both
necessary and sufficient to produce an interpolation.

5 Experimental Results

This section presents our implementation and the results obtained with our
approach, and make a comparison with the successive minima approach.

5.1 Experimental setup

We have implemented our method as an automatic code generator in C++
named PoLi. Our tool takes as input an intermediate representation of a kernel
and first outputs a C program where its statements have been swapped out with
calls to trace generation methods. Then, the lifetime analysis is performed on
several execution traces, from a remote compilation and execution of the mod-
ified kernel. Finally, the deduced mapping is directly applied by modifying the
access functions of the temporary arrays to the ones deduced. The baseline im-
plementation used to compare our time and storage requirement measurements
with is an implementation of the successive modulo technique [10]. The C kernels
have been compiled using gcc 9.3.0 with flags ”-fPIC -O3”, while the implemen-
tation itself has been compiled using g++ 9.3.0 using flags ”-O3 -ldl -lstdc++fs”.
Every compilation and execution of the kernels, and so their time measurements
have been done on an Intel Core i5-1135G7 CPU running at 2.40GHz. We list
the examples present in our benchmarks:

– fibonacci, an example of the computation of the n-th term of the fibonacci
sequence. It showcases very low runtime because of a very simple single loop
nest.

Lightweight Array Contraction by Trace-Based Polyhedral Analysis 11

Kernel Array size Mapping found Parameter instances Avg. runtime (PoLi) Avg. runtime (LF) Speed-up

fibonacci fib: N i mod 2 (N = 2, 3) 0.00103 0.024221 23.5
pc-2d A: N ×N i mod N, j mod N (N = 2, 3) 0.00284 0.045513 16.0

pc-2d-line A: N ×N i mod 2, j mod N (N = 3, 4) 0.01022 0.064114 6.3
blur-interleaved blurx: N ×N y mod 3, x mod N (N = 5, 6) 0.156355 0.187037 1.2

blur-tiled blurx: N ×N y mod 4, x mod 3 (N = 5, 6) 0.166067 4.041242 24.3
2mm A: N ×N i mod N, j mod N (N = 2, 3) 0.096936 2.228872 23.0

Table 1: Mappings and runtimes obtained using our approach (PoLi) compared
to the baseline successive modulo method (LF) [10]

– pc-2d and pc-2d-line, two examples of a producer-consumer mechanic in
two dimensions, respectively without and with the last 2 rows of A explicitly
being output dependencies. Those show the relevance of the method to only
temporary memory.

– blur-interleaved and blur-tiled, two examples of the 2D blur filter, respec-
tively with producer-consumer statements interleaved (motivating example),
and tiled scheduling. Together, they highlight the versatility of the method,
matching the Lefebvre-Feautrier approach for the interleaved case, but out-
paces it when the loop nest gets more complex with more loop counters
added for the tiling.

– 2mm, example of two successive matrix multiplication and assignment. This
example shows that the Lefebvre-Feautrier method also suffers from the
multiplicity of arrays in the program, which skyrockets its runtime compared
to our approach.

5.2 Results

Table 1 depicts the kernels and their targeted temporary array, alongside its
original size, and the mapping found is the reduced size inferred from our algo-
rithm. Parameter instance represents the starting parameter values chosen for
the analysis. The average runtime, in milliseconds, describes the sum of the mea-
sured time spent on the generation of the parameter instance, the time spent
instantiating the trace and the time spent interpolating the resulting mappings.
This is compared to the baseline runtime, also in milliseconds, which represents
the time spent applying the instance of the Lefebvre-Feautrier approach we have
implemented, and we show the speed-up factor between the two methods run
successively. We can observe that the fibonacci example has a speedup of more
than 20, explained by the small trace parameters chosen, as the runtime of PoLi
on this example is noticeably the lowest out of all. blur-tiled and 2mm have
respectively bigger iteration dimension and a greater overall number of arrays,
meaning the Lefebvre-Feautrier approach irremediably takes more time project-
ing over those several dimensions, whereas our method takes advantage of the
smallness of the parameter instances selected and suffers way less from more ar-
rays and array dimensions. The complexity of the LF method is directly tied to
the iteration dimension in an exponential fashion, while our approach is less sen-
sitive to it. blur-interleaved and pc-2d-line both present smaller speed-up

12 H. Thievenaz et al.

factors, as our parameter instance generation gives an upper bound too big, while
the dependencies can still be respected with lower parameter values. Therefore,
more carefulness is required in the selection of the starting parameter instance,
meaning that a better method to infer parameter instances is also of the essence.
On these two examples, our approach still manages to match or outperform the
Lefebvre-Feautrier method while having unnecessary large starting parameter
instances.

6 Conclusion

In this paper, we have presented a novel, lightweight, method for array contrac-
tion in the polyhedral model. This work is the very first step towards a new
paradigm of trace-based analysis to scale polyhedral compilation and demon-
strate a promising proof of concept on the array contraction problem. We design
and implement an automatic array contraction tool, that takes as input the
source code of the kernel and outputs optimized target code in regards to stor-
age space consumption. We present the algorithms and methodology used in
our tool. Execution times are compared to those of the Lefebvre and Feautrier
method and shows promising speed-up factors. Results answers positively to the
question of the possibility of generalization from a subset of execution traces.

In the future, we seek to apply another methodology to the starting parame-
ter instance deduction, in order to choose minimal parameters regardless of the
form of the loop. We also look forward to deduce more complex mappings, of
the form i 7→ Ai mod b(N), similarly to [1,3]. More generally, we seek to apply
the paradigm of trace analysis to other problems of the polyhedral compilation,
to further study the potential yield of trace analysis in the compilation process.

References

1. Alias, C., Baray, F., Darte, A.: Bee+ cl@ k: An implementation of lattice-based
array contraction in the source-to-source translator rose. ACM SIGPLAN Notices
42(7), 73–82 (2007)

2. Bastoul, C., Cohen, A., Girbal, S., Sharma, S., Temam, O.: Putting polyhedral loop
transformations to work. In: International Workshop on Languages and Compilers
for Parallel Computing. pp. 209–225. Springer (2003)

3. Bhaskaracharya, S.G., Bondhugula, U., Cohen, A.: Automatic storage optimization
for arrays. ACMTransactions on Programming Languages and Systems (TOPLAS)
38(3), 1–23 (2016)

4. Bhaskaracharya, S.G., Bondhugula, U., Cohen, A.: Smo: An integrated approach
to intra-array and inter-array storage optimization. In: Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. pp. 526–538 (2016)

5. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. In: Proceedings of the 29th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion. pp. 101–113 (2008)

Lightweight Array Contraction by Trace-Based Polyhedral Analysis 13

6. Clauss, P., Fernández, F.J., Garbervetsky, D., Verdoolaege, S.: Symbolic polyno-
mial maximization over convex sets and its application to memory requirement es-
timation. IEEE transactions on very large scale integration (VLSI) systems 17(8),
983–996 (2009)

7. Darte, A., Schreiber, R., Villard, G.: Lattice-based memory allocation. IEEE Trans-
actions on Computers 54(10), 1242–1257 (2005)

8. Feautrier, P., Lengauer, C.: Polyhedron model. Encyclopedia of parallel computing
1, 1581–1592 (2011)

9. Ketterlin, A., Clauss, P.: Prediction and trace compression of data access addresses
through nested loop recognition. In: Proceedings of the 6th annual IEEE/ACM
international symposium on Code generation and optimization. pp. 94–103 (2008)

10. Lefebvre, V., Feautrier, P.: Automatic storage management for parallel programs.
Parallel computing 24(3-4), 649–671 (1998)

11. Quilleré, F., Rajopadhye, S.: Optimizing memory usage in the polyhedral model.
ACM Transactions on Programming Languages and Systems (TOPLAS) 22(5),
773–815 (2000)

12. Rodŕıguez, G., Andión, J.M., Kandemir, M.T., Touriño, J.: Trace-based affine re-
construction of codes. In: Proceedings of the 2016 International Symposium on
Code Generation and Optimization. pp. 139–149 (2016)

13. Simbürger, A., Apel, S., Größlinger, A., Lengauer, C.: Polyjit: Polyhedral optimiza-
tion just in time. International Journal of Parallel Programming 47(5), 874–906
(2019)

	Lightweight Array Contraction by Trace-Based Polyhedral Analysis

